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Abstract

A graph is well-covered if every maximal independent set is a maximum independent set.

If a well-covered graph G has the additional property that G-e is also well-covered for

every line e in G, then we say the graph is strongly well-covered. We exhibit a

construction which produces strongly well-covered graphs with arbitrarily large (even)

independence number. The construction is in terms of a lexicographic graph product.
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ON CONSTRUCTING SOME STRONGLY WELL-COVERED GRAPHS

INTRODUCTION

A set of points in a graph is independent if no two points in the graph are joined by

a line. The maximum size possible for a set of independent points in a graph G is called the

independence number of G and is denoted by a.G). A set of independent points which

attains the maximum size is referred to as a maximum independent set. A set S of

independent points in a graph is maximal (with respect to set inclusion) if the addition to S

of any other point in the graph destroys the independence. In general, a maximal

independent set in a graph is not necessarily maximum.

In a 1970 paper, Plummer [ 13] introduced the notion of considering graphs in

which every maximal independent set is also maximum; he called a graph having this

property a well-covered graph. The work on well-covered graphs that has appeared in the

literature has focused on certain subclasses of well-covered graphs. Campbell [2]

characterized all cubic well-covered graphs with connectivity at most two, and Campbell

and Plummer [3] proved that there are only four 3-connected cubic planar well-covered

graphs. Royle and Ellingham [16] have recently completed the picture for cubic well-

covered graphs by determining all 3-connected cubic well-covered graphs.

For a well-covered graph with no isolated points, the independence number is at

most one-half the size of the graph. Well-covered graphs whose independence number is

exactly one-half the size of the graph are called very well-covered graphs. The subclass of

very well-covered graphs was characterized by Staples [17] and includes all well-covered

trees and all well-covered bipartite graphs. Independently, Ravindra [14] characterized

bipartite well-covered graphs and Favaron [6] characterized the very well-covered graphs.

Recently, Dean and Zito [4] characterized the very well-covered graphs as a subset of a

more general (than well-covered) class of graphs.
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A set S of points in a graph dominates a set V of points if every point in V-S is

adjacent to at least one point of S. Finbow and Hartnell [7] and Finbow, Hartnell, and

Nowakowski [8] studied well-covered graphs relative to the concept of dominating sets.

Finbow, Hartnell, and Nowakowski have also obtained a characterization of well-covered

graphs with girth at least five [9].

A well-covered graph is I-well-covered if and only if the deletion of any point from

the graph leaves a graph which is also well-covered. A well-covered graph is strongly

well-covered if and only if the deletion of any line from the graph leaves a graph which is

also well-covered. A well-covered graph is in the class W2 if and only if any two disjoint

independent sets in the graph can be extended to disjoint maximum independent sets.

Staples [18] showed that a well-covered graph is 1-well-covered if and only if it is in W2.

For the remainder of this paper, we use the W2 nomenclature instead of referring to 1-well-

covered graphs.

The class of well-covered graphs contains all complete graphs and all complete

bipartite graphs of the form Kn.n. The only cycles which are well-covered are C3, C4, C5,

and C7. We note that all complete graphs (except K1) are also in W2, but no complete

bipartite graphs (except K 1,1) are in W2 . The cycles C3 and C5 are the only cycles in W2.

Also note that the only complete graphs which are strongly well-covered are K1 and K2,

the only complete bipartite graphs which are strongly well-covered are K1.1 and K2.2, and

C4 is the only strongly well-covered cycle.

In [12], we show that a strongly well-covered graph with more than four points has

minimum degree at least four and is 3-connected. Also, we show that all strongly well-

covered graphs other than K1 and K2 have girth at most four, where the girth of a graph is

the size of a smallest cycle in the graph and a graph with no cycles has infinite girth. In this

paper we construct strongly well-covered graphs with triangles and strongly well-covered

graphs with girth four.
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PRELIMINARY RESULTS

Unless otherwise stated, we assume all graphs are connected. Note that a

disconnected graph is a W2 graph (strongly well-covered graph) if and only if each of its

components is a W2 graph (strongly well-covered graph). For notation and terminology

not defined here, see [1].

For a point v in a graph G, let N[v] = N(v) u {v). Define G, to be the graph

induced by G-N[v]. In other words, G, is the graph that remains after deleting v and all of

its neighbors. In [ 12], the author shows that if G is a strongly well-covered graph and G is

not complete, then for all points v in G, the graph G, cannot contain a component which is

a line. Campbell and Plummer [3] proved the following very useful necessary condition

for a graph to be well-covered. We will use this later to verify a construction.

Theorem 1. If a graph G is well-covered and is not complete, then G, is well-covered

for all v in G. Moreover, ct(G,) = a(G) - 1.

Recall from earlier that if G is a W2 graph, then for all points v the _raph G-v is

well-covered (since a W2 graph is I-well-covered). On the other hand, we show in [ 12]

that strongly well-covered is a sufficient condition for G to have the property that for all

points v the graph G-v is not well-covered. We state this here as Theorem 2. As a

consequence, K2 is the only strongly well-covered graph which is also a W2 graph.

Theorem 2. If G (G # K, or K2) is strongly well-covered, then for all points v in G the

graph G-v is not well-covered.
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Next, we state the characterization of the strongly well-covered graphs with

independence number two, as given in [ 12]. This characterization will be quite helpful in

building strongly well-covered graphs with independence number larger that two.

Theorem 3. Suppose G is well-covered with ct(G) = 2. Then G is strongly well-covered

if and only if G is (IV(G)I - 2) - regular.

If G # K2 is well-covered and e = uv is a line in G, consider maximal independent

sets in the graph G-e. Suppose J is a maximal independent set in G-e which does not

contain at least one endpoint of e (that is, J r {u,v} # (u,v} ). Then it follows that J is a

maximal independent set in G. Since G is well-covered, then IJI = a(G). Thus, every

maximal independent set in G-e which does not contain at least one endpoint of e has size

a(G). Consequently, to show that G-e is well-covered it suffices to show that every

maximal independent set in the graph G-e which contains both endpoints of e has size

a(G).

A CONSTRUCTION

For our construction, we use a product of well-covered graphs. Suppose H is a

graph with n points and (Gi}, i = 1, ... , n, is a family of disjoint graphs. Associate one

member of {Gi} with each point of H. We assume V(H) = v,,. .. , vn) and Gi is

associated with vi, for all i. We define the lexicographic product gmaph of H and I Gi.,

denoted Ho(G 1,...,Gn), as follows: V( Ho(GI, ..., GO) ) = V(GI) U ... U V(Gn) and

E(Ho(G 1,..., GO) ) = E(GI) u... u E(Gn) U (xy: xe V(Gi), ye V(G1) and vi - vj in H).

If every member of the family {Gi) is the same graph G, then the lexicographic

product consists of replacing each point of H with a copy of the graph G and joining the
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copies as indicated above. In this special case, we denote the lexicographic product by

HoG.

Topp and Volkmann [19] considered several different types of products of well-

covered graphs. In particular for the lexicographic product of well-covered graphs, they

proved a theorem which implies the following theorem.

Theorem 4. If H is well-covered and {Gi}, i = 1,. . . , IV(H)I, is a family of well-

covered graphs with oc(Gi) = a(Gj) for all i and j, then Ho(GI, ..., GIV(H)I) is well-

covered. Moreover, oc(Ho(G 1, ..., G1v(H)i)) = ox(H)c(G).

In the next theorem, we give an additional condition on a well-covered graph H

which is sufficient to obtain a strongly well-covered lexicographic product graph.

Theorem 5. Suppose H is a well-covered graph with the following additional property:

if e = uv is a line in H, then Hu, is a well-covered graph and ot(Hu,) = a(H) - 1, where Hu,

is defined to be the graph H - ( N[u] u N[v] ).

Let IV(H)l = n and {Gi}, i = 1,...,n, be a family of strongly well-covered graphs

with a(G1) = 2 for all i and each Gi is connected or 2K 1. Let L = Ho(Gi, ..., GO). Then

L is strongly well-covered, and ox(L) = 2a(H).

Proof. By Theorem 4, the lexicographic product graph L is well-covered and ct(L)

= 2a(H). Let V(H) = IuI,u 2,. . .,u,). Note the following about the structure of the

lexicographic product graph: V(L) is the union of V(Gi), for i = 1, ..., n. If ui - uj in H,

then x - y in L for all xc V(Gi), for all yE V(Gj). If ui is not adjacent to uj in H (i # j), then

x is not adjacent to y in L for all xc V(Gi), for all yE V(Gj). Also, a - b in Gi if and only

if a - b in L, for all a and b in V(Gi).

We proceed to show that L is strongly well-covered. Suppose e is a line in L.

Then either e corresponds to a line in H, or e corresponds to a line in some Gj.
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Case 1. Suppose e = xy corresponds to a line in Gj, for some j. Since Gj is

strongly well-covered with cc(Gj) = 2, then (x,y) is a maximum independent set in the

graph Gj-e. We consider the graph L-e.

To this end, consider the graph Hui = H - N[uj] ( a subgraph of H). By Theorem

1, graph H u is well-covered and (x(Huj) = a(H) - 1. Let Sj be the subgraph of L

corresponding to the components of Huj. Observe that Sj is a lexicographic product graph

itself. Then since H is well-covered, by Theorem 4 the graph Sj is well-covered and

cz(Sj) = 2ox(Huj) = 2(ca(H) - 1).

Suppose J is a maximal independent set in L-e such that J • {x,y). Since {x,y) is

a maximum independent set in Gj-e, then J = J-{x,y) must be contained in Sj. Since Sj is

well-covered, each component of Sj is well-covered and it follows that IJ'I = a(Sj) =

2(a(H) - 1). Thus, IJI = 2cc(H). So a maximal independent set in L-e which contains the

endpoints of e has size 2cc(H). Thus, every maximal independent set in L-e has size 2cx(H)

and hence is a maximum independent set in L-e. Therefore, L-e is well-covered.

Case 2. Suppose e corresponds to the line uiuj in H. Say e = xy, where xe V(Gi)

and yve V(Gj).

By hypothesis, Huiuj is well-covered and a(Hujuj) = a(H) - 1. Suppose J 2 (x,y)

is maximal independent in L-e. Let Sij be the subgraph of L corresponding to Huiuj.

Observe that Si is a lexicographic product graph itself. Since Huu is well-covered, then

by Theorem 4 the graph Sij is well-covered with at(Sij) = 2ct(Huiuj) = 2 (acH) - 1). Let F

= J-{x,y}. Then J' is contained in Sij and is maximal independent in Sij. Thus, IJ'I = 2

(ct(H) - 1), and so IJI = 2o(H). Hence, a maximal independent set in L-e which contains

(x,y) necessarily has size 2ct(H). Since L is well-covered, then every maximal

independent set in L-e has size 2ct(H). Thus, L-e is well-covered.

From Cases 1 and 2, we conclude that L-e is well-covered for all lines e in L.

Therefore, L is strongly well-covered. LI
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Note in Theorem 5 that Gi is allowed to be disconnected. In this case, Gi must be

2K1 since ct(Gi) = 2, the graphs K1 and K2 are the only complete strongly well-covered

graphs, and from above, for every point v in G, the graph G, cannot contain a component

which is a line.

Although the condition in Theorem 5 is very restrictive, there are well-covered

graphs which satisfy the condition and, hence, lead to the construction of infinite families

of strongly well-covered graphs. We now give five such infinite families based on the five

well-covered graphs shown in Figure 1.

Corollary 6. Suppose H is one of the five graphs in Figure 1 and {Gil, i = 1,

IV(H)I, is a family of strongly well-covered graphs with a(Gi) = 2 and each Gi is

connected or 2K 1. Then Ho(G 1, ..., Gjv(H)l) is strongly well-covered.

Proof. If H is one of the five graphs in Figure 1, it can be shown that H is well-

covered, and for any line uv in H, the graph H, = H - ( N[u] u N[vj ) is well-covered

with a(Huv) = ox(H) - 1. By Theorem 5, it follows that Ho(G 1, .... GIv(H)I) is strongly

well-covered.

F r

Figure 1



8

We stated earlier that a strongly well-covered graph has girth at most four. From

the following corollary, we are assured of the existence of strongly well-covered graphs

with girth exactly four.

Corollary 7. If H is a triangle-free well-covered graph which satisfies the conditions in

Theorem 5, then Ho2K1 is a girth 4 strongly well-covered graph.

Proof. If H is triangle-free, then Ho2K 1 is also triangle-free. Clearly Ho2KI has

4-cycles. The result then follows immediately from Theorem 5. [1

For example, the graph in Figure 2 is Cjo2K,. This graph was found by Royle

[15] with the aid of a computer, and independently by the author.

Figure 2

STRONGLY WELL-COVERED GRAPHS VIA W2 GRAPHS OF GIRTH FOUR

From the graphs given in Figure 1, we can construct strongly well-covered graphs

with a : 8. In order to construct strongly well-covered graphs with arbitrarily large

independence number, we turn to the family of W2 graphs of girth 4. First, we prove the

following lemma about W2 graphs of girth 4, which will allow us to use Theorem 5 to

construct families of strongly well-covered graphs.
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Lemma 8. Suppose H is a W2 graph of girth 4 and e = uv is a line in H. Let H, be the

graph H - ( N[u] u N[v] ). Then H,,, is well-covered and o:(Hu,) = ct(H) - 1.

Poof. Suppose e = uv is a line in H. Let U = N(u) - v and V = N(v) - u. Since H

has no triangles, then U r) V = 0.

Suppose J is a maximal independent set in the graph Hu,,. Clearly IJI < ct(H). We

wish to show that JI = a(H) - 1. We assume to the contrary that UJI < a(H) - 1.

If J dominates V, then J u (u} is maximal independent in H. Since IJ U ( uII <

ct(H) and H is well-covered, we have a contradiction. Thus, J does not dominate V.

Hence, there exists a point y such that yE V and J does not dominate y (see Figure 3).

u v

U y V

Figure 3

Note that N(y) - v is contained in V(Hu,) u U, since H has no triangles.

Therefore, (J u (u)) n N(y) = 0, J u {u) is independent, and J u (u) dominates N(y).

It follows that J u {u} and {y) are disjoint independent sets in H which cannot be

extended to disjoint maximum independent sets in H, and so H is not in W2. This

contradicts our hypothesis.

Thus, IJI = (x(H) - 1. Therefore, every maximal independent set in Hu, has size

ct(H) - 1. It follows that Hu, is well-covered and ot(Hu,,) = cL(H) - 1. H
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In [10] and [11], the author presents constructions which yield W2 graphs of girth

four with arbitrarily large independence number. Based on the W2 graphs obtained from

these constructions, we show in the following theorem that we can construct infinite

families of strongly well-covered graphs with arbitrarily large (even) independence

number.

Theorem 9. Suppose H is a W2 graph of girth 4 with n points, and (GO}, i = 1-. n, is

a family of strongly well-covered graphs with ct(Gi) = 2 and Gi is connected or 2K 1, for

all i. Then the lexicographic product graph Ho(Gt .... , GO) is a strongly well-covered

graph, and cc( Ho(G 1, ..., GO) ) = 2cc(H).

Prof. From Lemma 8, if e = uv is a line in H, then the graph H,,, is well-covered

and cx(Hu,) = cc(G) - 1. Thus, the graph H satisfies the additional condition required of a

well-covered graph in Theorem 5. It follows by Theorem 5 that Ho(G 1, ..., GO is

strongly well-covered and cc( Ho(G 1, ..., GO) ) = 20(H). [I

Recall that a W2 graph H has the property that for all points v in H, the graph H-v

is well-covered, and a strongly well-covered G has the property that for all points v in G,

the graph G-v is not well-covered. Given this disparity between the two types of well-

covered graphs, it is perhaps surprising that the lexicographic product of a W2 graph and a

family of strongly well-covered graphs as produced in Theorem 9 will yield a strongly

well-covered graph.

If H is a W2 graph of girth 4, then Ho2KI is strongly well-covered by Theorem 9.

Clearly, Ho2K 1 has girth 4. Since there are infinitely many W2 graphs of girth 4, it

follows that there are infinitely many girth 4 strongly well-covered graphs.

The graphs given in Figure 4 are the strongly well-covered lexicographic product

graphs Hjo2Kj and H2o2Kt, where H, and H2 are planar W2 graphs of girth 4 with eight

points and eleven points, respectively (see [10] for a discussion of planar W2 graphs of
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airth 4). Each of these graphs has points with degree four. Hence, the lower bound of

four for the minimum degree in a strongly well-covered graph (mentioned above) is sharp.

H

Figure 4
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A line in a graph G is a critical line if its removal increases the independence

number. A line-critical graph is a graph with only critical lines. Staples proved in [171 that

a triangle-free W2 graph is line-critical.

In searching for well-covered graphs H such that Ho(G 1, ..., GIV(H),) is strongly

well-covered, for an appropriate family of graphs (Gi}, we discovered the following

necessary condition on H.

Theorem 10. Suppose (Gi}, i = 1, ... ,n, is a family of strongly well-covered graphs

with a(Gi) = 2, for all i. If H is a well-covered graph on n points and Ho(Gl,...,GG) is

strongly well-covered, then H is line-critical.

Proof. Assume to the contrary that e = uv is not a critical line in H. Thus, or(H-e)

= a(H). Let L = Ho(G 1, ..., G,). Let e'= uivj be a line in L corresponding to the line e in

H, with uir V(Gi), vjr V(Gj) (i •j). Since a(H-e) = a(H), then there exists a maximal

independent set J in H-e which contains (u,v} such that IJI < ct(H). So J- ( u,v j dominates

H, and is contained in V(Hu,). For xE J- ( u,v), we have xE V(Gm) for some m, m ( i,j ).

Since cx(Gm) = 2, there exists maximum independent set IxD {x) in Gm with Ilxl = 2. Let I

= k.(I{: xEJ-{u,v) }. So I is in V(L). Since IJ-{u,v)l 5 a(H) - 2 and Ilxl = 2, then I11 <

2 (a(H) - 2) = 2oc(H) - 4. But then I u ({Li,VjI is maximal independent in L-e', and I I u

(ui,vj) I < 2a(H) - 2 < 2ox(H). Since ct(L) = 2cx(H) by Theorem 4 and L is assumed to be

strongly well-covered, we have a contradiction. []

However, if H is line-critical, then Ho(Gi, ... , GIv(H)I) is not necessarily strongly

well-covered. In fact, being line-critical and in W2 are not sufficient conditions to ensure

that Ho(G 1 , ..., GIV(H)I) is strongly well-covered. If H is the line-critical W 2 graph in

Figure 5, then Ho2K 1 is not strongly well-covered. Note that the graph H,,, = H-(NIul U

N[v]) is not well-covered.
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Figure 5
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